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ABSTRACT

In this paper the Philips Broadcast News transcription sys-

tem is described. The Broadcast News task aims at the recog-

nition of \found" speech in radio and television broadcasts
without any additional side information (e.g. speaking style,

background conditions). The system was derived from the

Philips continuous mixture density crossword HMM system,
using MFCC features and Laplacian densities. A segmenta-

tion was performed to obtain sentence-like partitions of the

broadcasts. Using data-driven clustering, the obtained seg-
ments were grouped into clusters with similar acoustic con-

ditions for adaptation purposes. Gender independent word-

internal and crossword triphone models were trained on 70
hours of the HUB4 training data. No focus condition speci�c

training was applied. Channel and speaker normalization was

done by mean and variance normalization as well as VTN
and MLLR. The transcription was produced by an adaptive

multiple pass decoder starting with phrase-bigram decoding

using word-internal triphones and �nishing with a phrase-
trigram decoding using MLLR-adapted crossword models.

1. INTRODUCTION

Past speech recognition research has mainly focused on
the decoding of good quality speech in clean environ-
ments. The focus has recently shifted to speech \found"
in the \real world". One of the data sources of real-world
speech are audio records from radio and television broad-
cast news. The data in these broadcasts have basically
the following additional characteristics:

� Unknown sentence boundaries (if the parts of speech
to be recognized can be called sentences).

� Diverse and rapidly changing acoustic environment.
Typical degradations of the quality of the speech sig-
nal are introduced by background music, noise, in-
terfering speakers as well as by changes between stu-
dio and telephone channels. On top of this, regional
dialects or accents of non-native speakers have to be
considered.

� Real-life speaking styles (spontaneous speech) as
well as speaker turns. Speaking styles range from

carefully read speech to free and spontaneous con-
versation.

� Natural language. Di�culties arise from unpre-
dictable changes of topics of the broadcast news as
well as from unpredictable reactions in free conver-
sation.

Thus the challenges of processing broadcast news data
may be summarized as follows:

� How to break the broadcast signal stream with a
duration of up to 180 minutes down to \sentences"
(called segments) with consistent channel, back-
ground and speaker characteristics? In addition,
the segment boundaries should ideally be consistent
with the linguistic boundaries of the spoken stream
of words.

� How to detect, reduce and learn the variation of the
signal caused by rapid changes of the channel, the
background and the speaker?

� How to reduce the variation of the signal caused by
changes of the speaking style?

� How to predict word sequences in conversational
English language?

This paper summarizes our approach to deal with the
new problems and describes the system we developed in
1997.

2. SEGMENTATION

2.1. Segmentation and Classi�cation

The automatic segmentation provided by NIST was used
for a �rst chopping of the whole (three-hours) audio
stream. The resulting 769 segments were subsequently
processed by a phone decoder [1] to produce a re�ned
set of segments automatically labeled in terms of male
speech, female speech and non-speech. The context-
independent phoneme models of the phone decoder were



gender-dependently trained on the Broadcast News (BN)
training data augmented with non-speech data (20 min-
utes of music and noise). The phone decoder was
a one-pass Viterbi beam-search decoder that evaluates
male and female models in parallel, guided by a bigram
phoneme model. The output thereof was post-processed
to produce homogeneous speech intervals tagged as male
or female as well as non-speech segments. Table 1 shows
the resulting distribution of the segments.

#segments all female male

small band 271 66 205

wide band 1160 417 743

non-speech 227 - -

all 1658 483 948

Table 1: Segmenter output

The non-speech segments represent a total of 8.01 min-
utes of data that were eliminated from subsequent decod-
ing stages. Speech was also classi�ed in terms of large
or small bandwidth using the F0/F2 labels of the NIST-
provided segments. However, this classi�cation was only
used in the segment clustering and not in the decoding.

2.2. Segment Clustering

The speech segments were clustered using an agglomer-
ative bottom-up technique based on the relative cross-
entropy measure. In this evaluation, we used the
between-segment distance implemented in the CMU seg-
menter [2], namely, the Kullback-Leibler distance metric,
augmented with an additive term to favore the merg-
ing of adjacent segments. Agglomerative clustering is
performed in two stages, a nearest-neighbor search con-
trolled by a small distance threshold followed by a search
subjected to a larger threshold for satisfying a minimum
duration constraint. This procedure was applied sepa-
rately on male and female segments for both large and
small speech bandwidths. This provided 106 clusters of
segments with an average duration of 100 seconds, the
minimum length being set to 25 seconds.

2.3. UE versus PE

We compared the generated automatic segmentation
(UE) with the manual segmentation provided by NIST
(PE) on the HUB4'96 evaluation task. In Tab. 2 er-
ror rates are reported for the �rst bigram decoding pass
(I) and the �nal trigram crossword decoding pass (VI).
A more detailed description of the decoding passes can
be found in section 7. The word error rate increased
on average by about 5% using the generated automatic
segmentation.

CNN CSP NPR W. NPR M.P.

�le1-4 �le1 �le2 �le3 �le4

PE, I 35.0 36.7 33.4 39.7 30.3
UE, I 36.3 37.1 35.3 40.4 32.4

PE, VI 28.7 29.0 26.4 34.2 25.6
UE, VI 30.2 30.0 29.1 35.1 26.8

Table 2: Word error rates in % on HUB4'96 eval. set for
di�erent segmentation scenarios.

3. FEATURE EXTRACTION

This section gives an overview of the acoustic front end
used for the HUB4'97 evaluation. For more detailed in-
vestigations related to this front end see [13].
In the acoustic front end, mel-frequency cepstral coef-
�cients are computed. A feature vector consists of 15
static features, 15 linear regression delta features, the
frame energy and its �rst- and second-order derivatives,
resulting in a 33-component feature vector.

3.1. LDA

Linear discriminant analysis is used to reduce the scat-
ter of the feature vectors within the classes compared
to the overall scatter. Three consecutive feature vec-
tors are adjoined to a 99-component vector to which
a linear discriminant transformation is applied. The
gender-independent LDA matrix was estimated using
the BN training data. The 35 vector components with
the largest eigenvalues were retained to form the �nal
feature vector. It is interesting to note that the LDA
trained on the BN training data performs only slightly
better than the LDA trained on the WSJ training data:
on the HUB4'96 dev. set the error rate dropped from
36.9% to 36.2%. The performance improvement ob-
tained by an LDA matrix trained on HUB4 data was
not big, however consistent over most focus conditions.

3.2. VTN

Vocal tract normalization (VTN) was applied in train-
ing and recognition. The intention was to reduce the
inuence of di�erences in the vocal tract length between
speakers on the computed feature vector. A linear warp-
ing of the frequency axis was realized by suitably shifting
the center frequencies of the mel-frequency �lter bank.
For the warping factor selection we adopted a maximum-
likelihood approach, see e.g. [11]. In recognition, the hy-
pothesized transcription required by VTN was obtained
from a �rst bigram decoding without VTN. From the re-
sults of Table 3 we concluded that VTN provides a means
to overcome the need for gender-dependent (GD) mod-
els. We therefore decided to use a GI setup with VTN
in training and recognition for the HUB4'97 evaluation.



Setup WER

GD no VTN 36.3

GD + VTN in recognition 35.6

GI + VTN in training & recognition 35.4

Table 3: E�ects of VTN in training and recognition
on the word error rate for gender-dependent (GD) and
gender-independent (GI) models. HUB4'96 evaluation
test set, UE, bigram decoding

3.3. Feature Normalization

The same signal analysis was applied to all data, i.e.
there is no special treatment for the small-bandwidth
(F2) data. The cepstral features were normalized for
each segment by cepstral mean subtraction and by unit
variance normalization. On the HUB4'96 development
data a reduction of word error rate of 3% relative due to
variance normalization was observed.

4. LEXICAL MODELING

The recognition lexicon is an extension of the Philips
NAB 64k lexicon and consists of 74,000 entries. New
words were transcribed by an automatic transcription
system [7] and some of these were corrected manually.
Phrase models were applied both in training and recog-
nition (a phrase is a word sequence which frequently oc-
curs in the training data). Each phrase was included
into the lexicon and into the language model as a single
entry. Phrases are a simple means of modeling long-span
acoustic and language context. We modeled typical vari-
ations in speaking style and coarticulation of the most
frequent word sequences by adding pronunciation vari-
ants to the phrases in the pronunciation lexicon. The
HUB4 training and recognition lexica were augmented
with the 330 most frequent phrases found in the BN
training data. The 10 most frequent phrases found in
the BN training data are: in the, of the, on the, to the,

and the, you know, for the, to be, I think, that the. Each
word in the lexicon has on the average 1.15 pronuncia-
tion alternatives.

4.1. Motivation to use Phrases

We investigated the e�ect of phrase modeling on the
Wallstreet-Journal task. The obtained perplexities are
presented in Tab. 4. The vocabulary size is 5 K words.
For 226 phrases added to the vocabulary the trigram
perplexity (M = 3) is reduced by 7.2%. (Note that
all perplexities reported are normalized to words.) For
the fourgram the improvement is still 3.0%. However,
the main e�ect of phrases is not the reduction in per-
plexity but the reduction in word error rate due to an

# Phrases 0 226

M=1 738.0 562.6

M=2 113.0 100.0

M=3 60.8 56.4

M=4 52.6 51.0

M=5 50.4 50.3

Table 4: Perplexities for the WSJ task.

improved pronunciation modeling of frequent word se-
quences. Word error rates for cross-word decoding for
the WSJ task are reported in Tab. 5. It is obvious that
there is a reduction in word error rate larger than ex-
pected from the perplexity reductions. Also, this reduc-
tion in word error rate persists for bigram, trigram and
fourgram decoding.

Model M=2 M=3 M=4

5 K words 8.2% 7.0% 6.9%

+ 226 phrases 7.7% 6.1% 6.0%

Table 5: Word error rate on si dt 05'92, si et 05'92,
si dt 05'93, si et h2'93 for bigram, trigram and fourgram
language models showing the inuence of phrase model-
ing.

5. LANGUAGE MODELING

5.1. Language Modeling Using Phrases

The training corpus consists of 140 millionwords of tran-
scribed broadcast news. The 1996 development data
were used as test set. Perplexities are shown in Tab. 6.
Due to the phrases the perplexity of the bigram model
was reduced by 8.4% and the perplexity of the trigram
model was reduced by 4.1%. As a result of the phrase
modeling the average context length of the trigram lan-
guage model was 3.5 words.

M=1 M=2 M=3

64 K words 1026.4 257.1 180.0

+ 330 phrases 841.2 235.4 172.7

Table 6: Perplexities for the HUB4'96 development set.

5.2. Language Model Adaptation

For the HUB4'97 evaluation, language model adaptation
techniques [8] were used to adapt and combine statis-
tics gained from the following corpora: Broadcast News
(BN), North American Business News (NAB) and the



transcripts of the acoustic training material (TAT). The
transcripts of the acoustic training data were mainly
used as a cross-validation set. On each corpus a lan-
guage model was estimated. The FMA technique [5],[8]
was used for an adaptation of the NAB language model
to the HUB4 task . Adaptive linear interpolation was
the preferred method to combine the three models.

5.3. Results on the Evaluation Data

This section briey summarizes key �gures for the 1997
evaluation data. 831 words from TAT and from the
speaker data base were supplemented to the vocabu-
lary. The chosen vocabulary resulted in an out-of-
vocabulary(OOV) rate of 0.48% on the 1997 evaluation
data. Tab. 7 gives the perplexities for the language mod-
els described above on the 1997 evaluation data. For the
bigram, addition of phrases gave a 9% improvement and
the adaptive combination another 9%.

Model Perplexity

M=2 BN without phrases 236.3

M=2 BN 215.7

M=2 BN + TAT + NAB adap. (*) 195.9

M=3 BN 149.9

M=3 BN + TAT (*) 146.6

Table 7: Perplexities on HUB4'97, (*) = used in evalu-
ation

We observed that the additional gain when going from
a trigram to a fourgram was small. Thus we decided to
use the 3.5-gram (phrase 3-gram) language model only.

6. ACOUSTIC TRAINING

6.1. Acoustic Modeling

In the acoustic modeling we employed continuous mix-
tures of Laplacian densities with a single, globally pooled
deviation vector. Decision tree clustering was applied
to continuous single Laplacian densities for within-word
and crossword triphones [3]. We used the question set
proposed by Odell [4]. As goodness-of-split criterion we
took the maximum likelihood approach with a few ap-
proximations which eventually led to a simple minimum
mean distance criterion. We obtained 8k clusters and
340k densities (11:9 � 106 parameters) for 33k gender in-
dependent within-word triphone states and 10k clusters
and 420k densities (14:7 �106 parameters) for 81k gender
independent crossword triphone states.

6.2. Training Strategy

We trained two gender-independent model sets on the
BN training data, one for within-word and one for cross-
word decoding. There were no focus-speci�c model sets.
Before taking this decision we compared several strate-
gies on the HUB4'96 dev. set:

1. Gender-dependent training on the wsj0+1 training
data and subsequent supervised adaptation speci�-
cally on each of the HUB4 focus conditions.

2. Gender-dependent training of a separate model set
for each of the HUB4 focus conditions.

3. Gender-dependent training of one model set on all
available HUB4 data.

We observed that all three strategies performed simi-
larly (see Table 8), the simplest strategy (scenario 3)
performed best.
Thus we decided to use only focus condition independent
model sets (scenario 3). Finally using VTN in training
and recognition gender independent word-internal and
crossword triphone models were trained on 70 hours of
the HUB4 training data.

Scenario HUB4'96 dev. set

1 41.9

2 42.4

3 38.6

Table 8: Word error rates in % on HUB4'96 dev. set
(male speakers only) for di�erent training scenarios. Bi-
gram language model, gender-dependent setup, no adap-
tation in recognition.

6.3. Unsupervised MLLR Adaptation

Unsupervised MLLR adaptation of the mean vectors was
applied to clusters of segments using the Least Mean
Square Approximation [12]. For information on the clus-
tering procedure, see section 2. The regression classes
are based on phonetic knowledge and are dynamically
de�ned using a tree organization. The amount of adap-
tation speech determines both the number of active re-
gression classes and the structure of the MLLR transfor-
mation matrices. In light of the presumably high error
rate we adopted a conservative approach and used more
than one MLLR transformation matrix only for classes
with more than 10,000 observations. We used a single
block-diagonal or purely diagonal matrix if the number
of observations was below 1000 and 200, respectively.
Note that MLLR adaptation was applied to both the



within-word model set and the crossword model set. Ta-
ble 11 presents the results for adaptation of the mean
vectors of the within-word models. It can be seen that
the error rate improvement due to VTN and MLLR was
about 8% on the HUB4'97 evaluation data.

7. DECODING RESULTS

Decoding was done in a number of stages [3]:

I a Using the hypothesized word sequence from a pre-
liminary bigram decoding, a linear frequency warp-
ing factor was estimated for each segment and the
features were warped accordingly (VTN). For the
decoding gender-dependent within-word triphone
HMM's were used, which were trained without
VTN.

I b A time-synchronous Viterbi bigram decoding was
carried out, producing a bigram lattice as its output.
For the decoding gender-independent within-word
triphone HMM's were used, which were trained on
VTN features.

II Using the hypothesized word sequence from the bi-
gram decoding (I), VTN was applied. The obtained
features were used in the further processing stages.

III MLLR adaptation was applied to the respective
clusters of segments. A new bigram decoding was
then done on the previously generated lattice em-
ploying the adapted models and resulting in a new
output lattice.

IV Trigram rescoring was carried out on that lattice
and the lattice was pruned employing the N-best
paradigm. In order to obtain su�cient variability
even for fairly small N, the original segments were
further subdivided into shorter "subsegments". The
number K of subsegments depends on the length
of the segment and the number of pauses within
the segment. N-best sentence hypotheses were gen-
erated for each of the subsegments, and then the
subsegments were again concatenated to form a full
segment. Thus we obtained the NK-best sentences
instead of the N-best sentences for each of the seg-
ments. Using this technique, the lattice error rate
after the N-best purging was reduced by a factor of
two to three on the development data.

V The resulting purged lattice was input to the tri-
gram cross-word decoder [3].

VI Batch unsupervised MLLR adaptation was carried
out on the cross-word models, with the hypothe-
sized transcription obtained from the last pass. For

MLLR adaptation of the crossword models the same
parameters were used as for the adaptation of the
within-word triphone models. A new crossword tri-
gram decoding was conducted using the adapted
models, resulting in the �nal system output.

broadcast

CNN CSP NPR W. NPR M.P.
�le1-4 �le1 �le2 �le3 �le4

PE,I 35.0 36.7 33.4 39.7 30.3

PE,III 32.0 32.7 30.5 36.6 28.5

PE,IV 30.2 30.6 28.1 36.2 26.3

PE,VI 28.7 29.0 26.4 34.2 25.6

Table 9: Word error rates in % on HUB4'96 PE eval. set
for various decoding passes

broadcast

CNN CSP NPR W. NPR M.P.
�le1-4 �le1 �le2 �le3 �le4

UE,I 36.3 37.1 35.3 40.4 32.4

UE,VI 30.2 30.0 29.1 35.1 26.8

Table 10: Word error rates in % on HUB4'96 UE eval.
set for various decoding passes

HUB4-E 97

UE,I 29.0

UE,III 26.7

UE,IV 24.8
UE,VI 23.1 (23.5)

Table 11: Word error rates in % on HUB4'97 English
evaluation set for various decoding passes

Tables 9, 10, 11 summarize the performance of the
Philips system for the HUB4'96 and the HUB4'97 evalu-
ation tasks using the original release (Nov. 1997) of the
HUB4 scoring rules. The o�cial result of the HUB4'97
English evaluation system was 23.5 % word error rate.
After correcting a bug in the postprocessing of the �nal
system output we obtain 23.1% word error rate.
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